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A B S T R A C T

Line segment extraction from point clouds is critical for analyzing and understanding large-scale scenes.
The main challenge is to generate line segments accurately as well as completely. However, state-of-the-art
approaches continue to struggle with this issue. In this paper, we propose a novel method for effectively
generating line segments from large-scale point clouds. To this end, we design a weighted centroid displace-
ment scheme for identifying comprehensive feature points. Then, we employ an 𝐿1-median optimization to
refine the identified feature points to perceive geometric edges on the underlying surface accurately. Following
that, we generate complete and concise line segments from the refined feature points by designing three
geometric operators: clustering, exclusion, and assimilation. The clustering operator generates the initial line
segments based on optimized feature points, and the exclusion operator and the assimilation operator ensure
the completeness and continuity of these line segments. We evaluate our approach on various scene point
clouds, such as TLS, MLS, and ALS data. Extensive experimental results show that our method can outperform
the competing approaches in terms of both accuracy and efficiency.
1. Introduction

In recent years, with the rapid development of 3D laser scanning
technologies, it has become more and more convenient for acquiring
scene-level point clouds containing rich 3D geospatial information,
which has been widely used in many fields, such as segmentation (Li
et al., 2023a; Adam et al., 2023; Lei et al., 2022), 3D mapping (Li
et al., 2023b; Tang et al., 2016; Ma et al., 2023), digital twins (Wu
et al., 2022; Lehtola et al., 2022), autonomous driving (Li and Zhuang,
2023; Chen et al., 2018), reconstruction (Cui et al., 2019; Wang et al.,
2023), etc. However, using scene-level point clouds directly in prac-
tice is usually hard because of their huge volume. To this end, line
segment extraction has already been a fundamental step for analyzing
and understanding large-scale scenes. The main technical challenge
of extracting line segments from point clouds is to completely and
accurately generate line segments from structural contours to shadow
details of the underlying surface.

The proposed line segment extraction method is divided into two
stages, i.e., feature point detection followed by line segment generation.
For the former, the existing feature point detection methods can be
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broadly classified into two categories: geometric-based methods (Xia
and Wang, 2017; Chen and Yu, 2019; Liu et al., 2020, 2021) and
learning-based methods (Yu et al., 2018; Himeur et al., 2021; Matveev
et al., 2022). The geometric-based methods detect feature points based
on intrinsic geometric properties of the underlying surface. Although
these methods effectively detect the feature points in geometric struc-
tures, they frequently misidentify shallow features on the underlying
surface. The learning-based methods are also able to detect feature
points effectively. However, these methods are time-consuming, and
their performance depends on the completeness of training datasets.

For the second stage, researchers typically use point-based methods
to generate line segments. Although existing point-based methods are
effective in extracting the structural contours of scenes, they potentially
ignore shallow details to some extent. Thus, effective methods for
extracting line segments at various scales are still challenging. For in-
stance, the method proposed by Xia and Wang (2017) performs well at
extracting model contours but requires high-quality feature points as in-
put. The method developed by Lin et al. (2017) maximizes the utility of
feature points detected in large-scale scenes to generate line segments.
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Fig. 1. Overview of the proposed method. (a) The raw input point cloud. (b) Identified feature points by weighted centroid displacement. (c) Thinned feature points via 𝐿1-median
optimization. (d) Extracted line segments from groups of refined points using the clustering operator. (e) The final complete line segments via the assimilation operator.
However, because of limitations in the feature point detection method,
it struggles to capture small-scale features effectively. Tian et al.
(2022) proposed a RANSAC-based line segment extraction algorithm.
Nonetheless, high-quality feature points derived from point cloud seg-
mentation results are required for the RANSAC-based algorithm. In
addition to point-based line segment extraction, existing methods en-
compass image-based methods (Lin et al., 2015; Hofer et al., 2017; Lu
et al., 2019) and learning-based methods (Wang et al., 2020; Zhang
et al., 2020; Hu et al., 2022). Image-based methods can accurately
extract line segment features by using object edges as prior information.
Nonetheless, these methods require high-quality images with clear
edge information. Furthermore, the 2D–3D transformation may result
in losing important geometric features. On the other hand, learning-
based detection methods must prepare annotated training datasets
when processing LiDAR point clouds, which is time-consuming and
labor-intensive.

To address the aforementioned issues, we propose a two-stage line
segment extraction method. In the first stage, we introduce a novel
metric for identifying feature points based on a weighted centroid
displacement scheme, as shown in Fig. 1(b). Following that, we employ
the 𝐿1-median optimization to refine the identified coarse feature
points, as illustrated in Fig. 1(c). The refined feature points can be used
to fit the geometric edges of the underlying surface accurately. In the
second stage, we design three geometric operators (i.e., clustering op-
erator, exclusion operator, and assimilation operator) to generate line
segments from point clouds. Specifically, the cluster operator divides
the refined feature points into distinct clusters, and each can be used for
generating a corresponding line segment; see Fig. 1(d). The exclusion
operator filters out the outliers line segments. The assimilation operator
ensures the completeness and continuity of the extracted line segments;
see Fig. 1(e). We verify the effectiveness of our method on a variety
of laser-scanning datasets. In summary, the main contributions of our
work are as follows:

• We propose a weighted centroid displacement scheme to identify
feature points on the input point cloud and then employ an 𝐿1-
median optimization to refine the identified features. Our method
can accurately perceive feature points on the underlying surface
that range from structural to finer characteristics.

• We design three geometric operators to generate line segments
based on optimized feature points and ensure their completeness
and continuity.

• We conduct extensive experiments to demonstrate that our
method outperforms the state-of-the-art approaches on a variety
of large-scale point clouds, such as TLS, MLS, and ALS data.

2. Related work

In this section, we review the noticeable progress of line segment
extraction methods for point clouds from two aspects: Feature point
detection and line segment generation. Since there are many various
line segment extraction methods, we only review those that are highly
related to ours.
2

2.1. Feature point detection

Feature point detection is crucial for processing large-scale point
clouds in various applications, such as point cloud scene segmenta-
tion and reconstruction. Existing techniques for feature point detec-
tion can be broadly classified into geometric-based and learning-based
methods. The geometric-based methods usually detect feature points
from point clouds based on the intrinsic geometric properties of their
corresponding underlying surfaces.

For example, Xia and Wang (2017) first defined gradients in unorga-
nized 3D point clouds with a proposed edge index based on geometric
centers and then utilized an eigenvalue analysis approach and graph
snapping algorithm to detect edge points. Chen and Yu (2019) em-
ployed a vector distribution and clustering algorithm to detect feature
points and used an improved cubic B-spline curve algorithm to fit the
feature lines on point clouds. By analyzing the tensors of point normals
and locations, Liu et al. (2020) proposed a bi-tensor voting method to
recognize feature points. Besides, Liu et al. (2021) further introduced
a neighbor reweighted local centroid scheme for robustly detecting
feature points from point clouds. Hackel et al. (2017) designed a joint
classification and contour extraction method for point clouds, enabling
the definition of an expressive feature set and the extraction of topo-
logical meaningful object contours. Recently, a growing trend has been
utilizing learning-based methods for feature point detection from point
clouds. Yu et al. (2018) introduced EC-Net, the first neural network to
detect feature points from point clouds. Himeur et al. (2021) proposed
PCEDNet, a lightweight neural network that leverages neural networks
to detect edges in point clouds. Matveev et al. (2022) proposed DEF, a
deep learning framework for extracting sharp features in CAD models.

Though the above methods can efficiently detect feature points in
small-scale point clouds, e.g., CAD models, they frequently misidentify
shallow features on the underlying surface. Besides, the performances
of some methods rely on additional geometric information (e.g., nor-
mal vectors), which may be unreliable. Last but not least, they are
time-consuming when handling large-scale point clouds.

2.2. Line segment generation

Existing techniques for extracting line segments from point clouds
can be roughly divided into three types of methods: (1) point-based
methods: Moghadam et al. (2013) proposed a feature line extraction
algorithm based on region growth. This method first detects bound-
ary points and the intersection points between planes and then fits
these two types of points into feature line segments. Ni et al. (2016)
utilized the RANSAC scheme and angular gap metric algorithms to
detect feature line segments. Lin et al. (2017) proposed a method
extracting line segments from point clouds based on linear features in
the local planar region, which is provided by a collection of facets.
Xia and Wang (2017) designed an edge-linking algorithm on point
clouds. This method first builds the graph structure using feature points
and generates line segments using approximate orientation. Tian et al.

(2022) presented an approach that extracts line segments from point
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clouds by fitting boundary points of the detected plane structures;
(2) image-based methods: Lin et al. (2015) presented a segmentation-
based line segment algorithm for point clouds, which first projects the
segmented regions on point clouds onto the corresponding 2D images,
and extracts 2D line segments using the contours of the projected
regions, and then projects these line segments back into the 3D space
to obtain line segments on point clouds. Hofer et al. (2017) first
employed the LSD algorithm to extract 2D line segments from images
and then used graph clustering to obtain the final 3D line segments. Lu
et al. (2019) proposed a method that extracts line segments from point
clouds by using 2D planes and the structural information of the scene;
(3) learning-based methods: Wang et al. (2020) introduced PIE-NET,
an end-to-end learnable approach for detecting feature edges using a
region proposal strategy. Zhang et al. (2020) proposed a parametric
space-based framework and a guided learning approach to address the
challenges of extracting features from large-scale point clouds with
huge, unstructured point space. Hu et al. (2022) used a pre-trained
neural networks to detect 3D line segments from point clouds. Zhao
et al. (2022) developed the first learning-based model for segmenting
and describing 3D lines in LiDAR point clouds, as well as performing
robust point cloud registration with the extracted 3D lines as feature
descriptors.

Although existing methods for extracting line segments from point
clouds can extract them on significant structures well, they still have
the following limitations. First, existing approaches frequently miss line
segments on fine details. Second, line segments extracted by previous
methods are often inaccurate and incomplete. Finally, the performances
of image-based methods rely on the quality of 2D images, and the
performances of learning-based methods depend on the completeness
of the training dataset.

3. Methodology

In this section, we present a novel two-stage method for extracting
high-quality line segments from large-scale point clouds. In the first
stage, we can accurately detect feature points that precisely locate
the geometric edges of the underlying surface. Using three geometric
operators, we reconstruct complete and concise line segments from the
detected feature points in the second stage. Details of both are depicted
as follows.

3.1. Detecting feature points

Since large-scale point clouds frequently contain widely geometric
characteristics, ranging from structural to finer edges, it is a chal-
lenge to directly identify accurate feature points from large-scale point
clouds. To this end, we first introduce a weighted centroid displacement
scheme for detecting coarse feature points, followed by using an 𝐿1-
median optimization to refine the detected feature points so that these
refined points can accurately match underlying geometric edges.

3.1.1. Coarse feature points detection by a weighted centroid displacement
scheme

First, we denote the input point cloud as 𝑃 . Given a point 𝑝𝑖 ∈ 𝑃 ,
ts traditional centroid displacement vector 𝐿𝑖 can be calculated as
𝑖 = 𝑐𝑖−𝑝𝑖, where 𝑐𝑖 is the centroid computed by averaging the positions
f the 𝑘-nearest neighbors of 𝑝𝑖. Roughly, ‖

‖

𝐿𝑖
‖

‖

, the length of vector
𝑖, can be used as a metric for identifying coarse feature points. In
ost cases, a large value of ‖

‖

𝐿𝑖
‖

‖

indicates that point 𝑝𝑖 is more likely
o be a feature point. However, the traditional centroid displacement
annot perceive minor surface variations effectively. This may result in
eature points being misidentified as non-feature points in regions with
inor surface variations, as shown in Fig. 3(b). The reason is that 𝐿𝑖

s essentially a uniform Laplacian vector, and its weight strategy is not
ensitive to the surface variation. As can be observed from Figs. 3(a)
nd 3(b), the lengths of traditional displacement vectors of points in
3

the flat region and shallow feature are both small, which cannot be
used for distinguishing shallow feature points and non-feature points
clearly.

To tackle these challenges, we introduce a novel weighted cen-
troid displacement scheme. The key is to estimate a new centroid for
each point to enlarge the differences between feature points and non-
feature points, especially those in regions with shallow features. As
illustrated in Fig. 2, if point 𝑝𝑖 in the flat region or shallow feature,
its corresponding traditional centroid 𝑐𝑖 is very close to the underlying
surface; see purple points in Figs. 2(a) and 2(b). Thus, we are difficult
to identify feature points from shallow features using the traditional
centroid displacement vector 𝐿𝑖. For this reason, we estimate a new
centroid for each point 𝑝𝑖. To this end, for one neighbor point 𝑝𝑗 , we
irst generate a temp point 𝑚𝑗 , the green point in Fig. 2(c), to construct
vector ⃖⃖⃖⃖⃖⃖⃖⃗𝑝𝑖𝑚𝑗 = ⃖⃖⃖⃖⃖⃖⃗𝑝𝑖𝑝𝑗+ ⃖⃖⃖⃖⃖⃗𝑝𝑖𝑐𝑖. After constructing all the vectors, for point 𝑝𝑖,
e can estimate a new centroid 𝑑𝑖 for computing the proposed weighted

entroid displacement vector 𝛿𝑖 = 𝑑𝑖 − 𝑝𝑖, which can be rewrite as

𝑖 =
1

∑

𝑝𝑗∈𝛺(𝑝𝑖) 𝜔(𝑖, 𝑗)

∑

𝑝𝑗∈𝛺(𝑝𝑖)
𝜔(𝑖, 𝑗)⃖⃖⃖⃖⃖⃖⃖⃗𝑝𝑖𝑚𝑗 , (1)

where 𝜔(𝑖, 𝑗) = exp(− ‖

‖

‖

𝑝𝑖 − 𝑝𝑗
‖

‖

‖

2
∕𝑟2), 𝛺(𝑝𝑖) denotes the 𝑘−nearest neigh-

bor points of 𝑝𝑖 in 𝑃 , and 𝑟 represents the average distance between
oint 𝑝𝑖 and its neighbor points. As shown in Fig. 2, the weighted
entroid displacement vectors of points in sharp features and shallow
eatures are larger than those of points in flat regions. The comparison
etween Figs. 2(a) and 2(b) shows that the weighted centroid dis-
lacement scheme amplifies the differences between points in shallow
eatures and points in flat regions. Inspired by previous Laplace-based
ethods SSI (Nie, 2016) and NRLC (Liu et al., 2021), our scheme

ims to push the centroid far from the local surface for identifying
he potential feature point by adding a vector ⃖⃖⃖⃖⃖⃖⃗𝑝𝑖𝑝𝑗 to the traditional
entroid displacement vector ⃖⃖⃖⃖⃖⃗𝑝𝑖𝑐𝑖; see Fig. 2 for example. Doing this
llows us to enlarge the differences between feature and non-feature
oints.

Fig. 4 illustrates the point weights computed by using two metrics
ncluding ‖𝐿𝑖‖ and ‖𝛿𝑖‖. From Fig. 4(b), we can observe that the
olors of feature points in shallow edges are similar to those in smooth
egions when using metric ‖𝐿𝑖‖. Being different from that, we can see
rom Fig. 4(c) that metric ‖𝛿𝑖‖ greatly enlarges the differences between

feature points and non-feature points, especially those in shallow edges;
see the zoomed regions. The reason is that the proposed weighted
centroid displacement scheme would be more suitable for the task
of feature point detection when compared to the traditional centroid
displacement scheme.

Based on the above analysis, we define a new metric for detecting
feature points from point clouds as

𝑓𝑖 = 𝜅𝑖 ⋅ ‖‖𝛿𝑖‖‖ ,∀𝑝𝑖, (2)

where 𝜅𝑖 > 0 is a weighted term aiming to further increase the
differences between feature and non-feature points, especially in the
regions with finer edges. As we know, feature points generally appear
in regions with large geometric variations. Therefore, with this prior
knowledge, we use flatness to estimate the weight 𝜅𝑖 based on the
weighted centroid displacement vector 𝛿𝑖. Specifically, the flatness of
the local surface is measured along 𝑥𝑦𝑧 axes, which is calculated as

𝜅𝑖 = 𝜔𝑥
𝑖 + 𝜔𝑦

𝑖 + 𝜔𝑧
𝑖 , (3)

where 𝜔𝑥
𝑖 , 𝜔𝑦

𝑖 , and 𝜔𝑧
𝑖 are calculated as

𝜔𝑥
𝑖 = 𝛼 + (1 − 𝛼) ⋅

(𝛿𝑥𝑖 − 𝜃𝑥𝑚𝑖𝑛)
𝜃𝑥𝑚𝑎𝑥 − 𝜃𝑥𝑚𝑖𝑛

,

𝜔𝑦
𝑖 = 𝛼 + (1 − 𝛼) ⋅

(𝛿𝑦𝑖 − 𝜃𝑦𝑚𝑖𝑛)

𝜃𝑦𝑚𝑎𝑥 − 𝜃𝑦𝑚𝑖𝑛
,

𝜔𝑧
𝑖 = 𝛼 + (1 − 𝛼) ⋅

(𝛿𝑧𝑖 − 𝜃𝑧𝑚𝑖𝑛)
𝑧 𝑧 .

(4)
𝜃𝑚𝑎𝑥 − 𝜃𝑚𝑖𝑛
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Fig. 2. Illustrations of the traditional centroid 𝑐𝑖 (colored in purple) and our weighted centroid 𝑑𝑖 (colored in red) of a point 𝑝𝑖 located in (a) flat region, (b) shallow feature, and
(c) sharp edge, respectively. Note that point 𝑝𝑗 (colored in blue) is one of the 𝑘-nearest neighbor points of point 𝑝𝑖, and the point 𝑚𝑗 (colored in green) in the rightest column is
a temp point. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. Feature point identification on raw input using different metrics. From left to right: raw input, feature detection results using ‖𝐿𝑖‖, ‖𝛿𝑖‖, and 𝑓𝑖, respectively.
Fig. 4. Visualization of point weights computed by different metrics. From left to right: (a) input, (b) point weights computed by metric ‖𝐿𝑖‖, (c) point weights computed by
metric ‖𝛿𝑖‖. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Here, 𝛼 ∈ [0, 1] is a balance parameter, 𝛿𝑥𝑖 , 𝛿
𝑦
𝑖 , 𝛿

𝑧
𝑖 are three components

of vector 𝛿𝑖, 𝜃𝑥𝑚𝑖𝑛, 𝜃
𝑦
𝑚𝑖𝑛, 𝜃

𝑧
𝑚𝑖𝑛 are minimum component values of the

weighted centroid displacement vector of point 𝑝𝑖 and those vectors
of its 𝑘−neighbors. Similarly, 𝜃𝑥𝑚𝑎𝑥, 𝜃

𝑦
𝑚𝑎𝑥, 𝜃𝑧𝑚𝑎𝑥 are maximum component

values. Empirically, we set 𝛼 = 0.5 by default. The formula (3) allows
us to capture the independent surface variations along different axes,
enabling measuring the flatness of local regions precisely. As a result,
the value of 𝜅𝑖 of feature points tends to be larger than non-feature
points.
4

Now, we can easily obtain feature points 𝐅 from input point clouds
via

𝐅 = {𝑝𝑖 | 𝑓𝑖 ≥ 𝜖𝑓 }, (5)

where 𝜖𝑓 ≥ 0 is a threshold for determining whether a point is a
feature point. We conduct a series of comparison experiments on a
large-scale point cloud scene to testify the proposed method, as shown
in Fig. 3. Specifically, Fig. 3(b) illustrates the feature point detection
result using the metric ‖𝐿 ‖, where feature points in fine edges fail to
𝑖
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Fig. 5. From left to right: raw input, coarse feature points, and feature point optimization result.
Fig. 6. From left to right: coarse feature points, the feature point optimization result by the first term of model FPO (6), and the optimization result by full model FPO (6).
be identified. Fig. 3(c) shows the feature points detection result using
‖𝛿𝑖‖ as the metric. As we can see, more feature points on finer edges are
detected but still incomplete. In contrast, with the proposed metric 𝑓𝑖,
our method is capable of detecting complete feature points from widely
geometric characteristics, as demonstrated in Fig. 3(d).

3.1.2. Coarse feature point optimization
Due to the irregular sampling rates of point clouds (especially those

large-scale point cloud scenes), the detected feature points may be
redundant. Such an example can be seen in Fig. 5(b). Thus, it is
necessary to optimize them further.

In general, the detected feature points are assumed to lie in the
geometric edges of the underlying surface. Thus, we aim to reposition
these points to make their distribution thin while not changing the
shape of the input point clouds. To this end, we utilize the well-
known 𝐿1-median optimization (Lipman et al., 2007; Chen et al., 2022),
designed for whole point cloud optimization. First, we denote the
optimized feature points as 𝐗. Then, we apply 𝐿1-median optimization
to formulate a feature point optimization model, abbreviated as FPO,
which is written as

min
𝑥𝑖

∑

𝑝𝑘∈𝑁𝑃 (𝑥𝑖)

𝑒−
‖𝑝𝑘−𝑥𝑖‖

2

𝑟2 ‖

‖

𝑥𝑖 − 𝑝𝑘‖‖2 + 𝜇
∑

𝑥𝑘∈𝑁𝐗(𝑥𝑖)

1
𝜎𝑖 ‖‖𝑥𝑖 − 𝑥𝑘‖‖2

, (6)

where 𝑥𝑖 ∈ 𝐗, 𝑁𝑃 (𝑥𝑖) denotes the 𝑘-neighbor points of 𝑥𝑖 in the input
point cloud 𝑃 , and 𝑁𝐗(𝑥𝑖) denotes the 𝑘-neighbor points of 𝑥𝑖 in the
feature points 𝐗, 𝜇 is the balance parameter, 𝜎𝑖 = 𝑡2𝑖 ∕(𝑡

0
𝑖 + 𝑡1𝑖 + 𝑡2𝑖 ), where

𝑡0𝑖 < 𝑡1𝑖 < 𝑡2𝑖 are the eigenvalues computed by applying PCA to the
local neighborhood of point 𝑥𝑖. A larger value of 𝜎𝑖 indicates that more
neighbor points are distributed in the principal direction. As a result,
the first term can drive the optimized feature points 𝐗 to approximate
the geometry of roughly detected feature points 𝐅, and the second term
can keep the distribution of the optimized feature points 𝐗 fair.

We apply the gradient descent method to minimize model (6). Note
that we initialize 𝐗 = 𝐅, and empirically set 𝜇 = 0.07 and set 𝑟 = 3 ̄𝑑𝑖𝑠,
where ̄𝑑𝑖𝑠 is the average distance between points. Moreover, we apply
it to feature points, and the optimized result is demonstrated in Fig. 6.
As shown in Fig. 6(b), ignoring the second term of model (6) leads
to discontinuities. Conversely, our model is capable of generating a
complete and thin result.
5

3.2. Line segment extraction

With detected feature points, line segment generation is used to
accurately extract complete line segments from large-scale point clouds.
To achieve this goal, we propose a coarse-to-fine generation algorithm,
which first uses feature points to produce coarse line segments and
then refine them from the aspects of completeness and simplicity. The
whole algorithm is outlined in Algorithm 1, where the key is a series of
geometric operators, including the clustering operator, exclusion oper-
ator, and assimilation operator. First, the clustering operator classifies
feature points into multiple groups such that each will be used to gener-
ate a line segment. Second, the exclusion operator removes outlier line
segments from the generated line segment set by recognizing inclusion
relationships between line segments. Finally, the assimilation operator
merges line segments to ensure their completeness and simplicity.
Details of these operators are depicted as follows.

Algorithm 1: Line segment extraction
Input: detected feature points set 𝐗, threshold 𝜖𝑙
Output: set of final line segments 𝐅𝐋𝐒
Initialization: 𝐅𝐋𝐒 ← ∅
(1) Clustering operator :

𝐑 = RegionGrowingbyPCA(𝐗);
𝐋𝐒 = LineSegmentGeneration(𝐑);

(2) Exclusion operator :
FilterAndUpdate(𝐋𝐒);

(3) Assimilation operator:
while (New line segment generation) do

SortLineSegmentsbyLength(𝐋𝐒);
AssimilateLineSegmentsAndUpdate(𝐋𝐒);

end
𝐅𝐋𝐒 = 𝐋𝐒;
return 𝐅𝐋𝐒;

Clustering operator. The clustering algorithm aims to group the
detected feature points into different clusters based on their geometric
properties concerning the underlying surface of the point clouds. Here,
we utilize a region-growing strategy (Haghighatgou et al., 2022) to
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Fig. 7. Line segment generation on a large-scale point cloud. From left to right: optimized feature points, point clustering result, coarse line segments, final line segments.
group feature points into different clusters, where points within each
cluster tend to lie on the same edge. Specifically, this algorithm can
be detailed as: (1) For each feature point 𝑥𝑖 ∈ 𝐗, we calculate the
eigenvector 𝑒𝑖 corresponding to the largest eigenvalue of the covariance
matrix of 𝑥𝑖 as its principal direction using the PCA algorithm. (2) we
use the breadth-first search strategy to obtain all the points that belong
to the same cluster with point 𝑥𝑖. Let this cluster be denoted as 𝑣𝑖.
Specifically, we determine whether point 𝑝𝑗 belongs to cluster 𝑣𝑖 or
not by checking the condition: 𝑒𝑗 ⋅ 𝑒𝑖 ≥ 0.85, where 𝑒𝑖 =

1
|𝑣𝑖|

∑

𝑥𝑚∈𝑣𝑖
𝑒𝑚

is the average principal direction of the cluster 𝑣𝑖. (3) When all the
feature points are grouped, we can get the final clustering result 𝐑 =
{

𝑣1, 𝑣2, 𝑣3,… , 𝑣𝑛
}

; see Fig. 7(b). Moreover, we can further obtain a
collection of coarse line segments 𝐋𝐒 =

{

𝑙1, 𝑙2, 𝑙3,… , 𝑙𝑛
}

by performing
a least-squares fitting method on each group of points; see Fig. 7(c)

Exclusion operator. Outlier line segments are inevitably generated
when processing large-scale point clouds with rich details. These outlier
line segments not only waste computational resources but also cause er-
rors in downstream applications, such as shape analysis, measurement,
etc. Thus, removing them from the line segment set 𝐋𝐒 is necessary.
The key is to recognize outlier segments correctly. Here, we propose
a recognition strategy using the neighborhood relations between line
segments. Specifically, we first use the distance of two midpoints to
measure the distance between the corresponding line segments. Then,
the outlier line segments can be recognized by

Loutlier =
{

𝑙𝑜 ∣ 𝑙𝑗 ∈ 𝑛𝑒𝑖(𝑙𝑜), 𝑙𝑜 ∉ 𝑛𝑒𝑖(𝑙𝑗 )
}

, (7)

where 𝑛𝑒𝑖(⋅) denotes the 𝑘-nearest neighbor line segments (𝑘 = 8
by default). This means that once a neighbor line segment 𝑙𝑗 of 𝑙𝑜
satisfies Eq. (7), then 𝑙𝑜 is judged as an outlier. The method checks
each line segment in the neighbor set 𝑛𝑒𝑖(𝑙𝑜) of 𝑙𝑜 according to Eq. (7).
Even though some line segments of 𝑛𝑒𝑖(𝑙𝑜) are outliers, the result is
unchanged. We show a line segment set in Fig. 8. If a line segment
is an outlier, the neighborhood relations between the line segment and
its 𝑘-nearest neighbor line segments are not dual.

Assimilation operator. After filtering outlier line segments, the
remaining line segments still have issues in completeness and simplic-
ity, as illustrated in Fig. 7(c). To tackle this problem, the assimilation
operator merges line segments with similar geometric attributes as
much as possible. For this, by taking location, length, and direction into
account, we first define a metric for measuring the similarity between
two adjacent line segments as

𝑆(𝑙𝑖, 𝑙𝑗 ) = 𝑆𝜃(𝑙𝑖, 𝑙𝑗 ) + 𝑆ℎ(𝑙𝑖, 𝑙𝑗 ) + 𝑆𝑑 (𝑙𝑖, 𝑙𝑗 ), (8)

where 𝑙𝑖, 𝑙𝑗 are two adjacent line segments, and

𝑆𝜃(𝑙𝑖, 𝑙𝑗 ) = |𝑙𝑗 | sin 𝜃,

𝑆ℎ(𝑙𝑖, 𝑙𝑗 ) =
ℎ21 + ℎ22
ℎ1 + ℎ2

,

𝑆𝑑 (𝑙𝑖, 𝑙𝑗 ) =
{

0, if 𝑙𝑖 intersects with 𝑙𝑗′ .
6

𝑑𝑝, else
Fig. 8. A line segment set for demonstrating the outlier recognition strategy. The red
line segment is the outlier, and the yellow line segments denote the neighbor line
segments of the outlier by 𝑘−nearest searching. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Similar to the work proposed by Du et al. (2019), 𝑆𝜃(𝑙𝑖, 𝑙𝑗 ) converts
angular differences into length representation; see in Fig. 9(a), 𝜃 is
the angle between 𝑙𝑖 and 𝑙𝑗 ,

|

|

|

𝑙𝑗
|

|

|

denotes the length of 𝑙𝑗 . 𝑆ℎ(𝑙𝑖, 𝑙𝑗 )
is the vertical distance (Bullen, 2013) between two line segments,
which is a more comprehensive way to synthesize distances and reduce
the effect of extreme values. Here, ℎ1 and ℎ2 denote two projection
distances of the endpoints of line segment 𝑙𝑗 when projecting it onto
line segment 𝑙𝑖. Inspired by Guo et al. (2022), 𝑆𝑑 (𝑙𝑖, 𝑙𝑗 ) quantifies the
distance between two line segments by using their projected endpoints,
where 𝑑𝑝 denotes the minimum distance between the endpoints of
two line segments. In general, if two line segments 𝑙𝑖, 𝑙𝑗 are similar,
the metrics 𝑆𝜃(𝑙𝑖, 𝑙𝑗 ), 𝑆ℎ(𝑙𝑖, 𝑙𝑗 ), and 𝑆𝑑 (𝑙𝑖, 𝑙𝑗 ) have small values. In other
words, a smaller value of 𝑆(𝑙𝑖, 𝑙𝑗 ) means line segments 𝑙𝑖 and 𝑙𝑗 tend to
be more similar.

With the proposed similarity metric (8), we present a two-stage
assimilation operator based on an expansion scheme to merge sim-
ilar line segments. In the first stage, for line segment 𝑙𝑖, we create
a neighbor line segment set 𝐒𝐢 by searching line segments within a
specified region defined by longitudinally expanding the line segment
with a radius 𝑅 = 4 ̄𝑑𝑖𝑠 and expand the line segment along its direction
by 4 ̄𝑑𝑖𝑠; see Fig. 10. After that, we can obtain an assimilation set 𝐒𝐢
for 𝑙𝑖 by checking the condition 𝑆(𝑙𝑗 , 𝑙𝑗 ) < 𝜖𝑙. Specifically, if a line
segment 𝑙𝑗 in the neighbor line segment set satisfies this condition, we
add it to 𝐒𝐢. In the second stage, we generate a merged line segment
𝑙𝑎 for assimilation set 𝐒𝐢. To this end, for each assimilation set, we
first compute a geometric central point 𝑜 by averaging all endpoints
of line segments and a direction vector by averaging the directions of
all line segments. Then, we can produce a new line by using the central
point and the direction vector. Finally, based on orthogonal projection,
we use the two endpoints with the largest distance to clip the line to
generate the merged line segment.
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Fig. 9. The illustrations of (a) 𝑆𝜃 (𝑙𝑖 , 𝑙𝑗 ), 𝑆ℎ(𝑙𝑖 , 𝑙𝑗 ), and (b) 𝑆𝑑 (𝑙𝑖 , 𝑙𝑗 ).
Fig. 10. From top to bottom: scatter line segment distribution, similar line segment searching, line segment assimilation. 𝐒𝐢 represents the line segments set to be assimilated. 𝑜
is the central point of set 𝐒𝐢. 𝑙𝑎 is the merged line segment for assimilation set 𝐒𝐢.
4. Experiments

To validate the performance of our method, we have conducted a
series of experiments on various datasets, including TLS, MLS, ALS,
CAD, and RGB-D point clouds. TLS, MLS, and ALS point clouds gen-
erally capture large-scale outdoor scenes, while RGB-D point clouds
depict indoor scenes. Besides, CAD point clouds usually represent single
objects. Here, we give the details about the testing data in Table 1. All
the algorithms involved are implemented in C++, and experiments are
conducted on a computer with an AMD Ryzen 7 5800H CPU and 16 GB
RAM.

4.1. Parameter setting

Our method involves four parameters, i.e., 𝛼, 𝜇, 𝐾, and 𝑅. The pa-
rameter 𝛼 contained in formula (4) is used for detecting feature points.
𝛼 = 0.5 is sufficient to handle most point cloud data. The parameter
𝜇 contained in formula (6) is used for optimizing the distribution of
coarse feature points. We empirically set 𝜇 = 0.07 for all the tested
experiments.

The value of parameter 𝐾 denotes the number of closest neighbor
points, which impacts the accuracy of feature point detection. As shown
in Fig. 11, the detected shallow features on the roof gradually disappear
where 𝐾 increases. Figs. 11(b) and 11(c) demonstrate that our strategy
can produce satisfactory results for 𝐾 in the range of [25, 40].
7

The parameter 𝑅 denotes the search range for constructing line
segments, which impacts the completeness of line segment generation.
In Fig. 12, we present line segment extraction results for varying 𝑅. As
we can see, the detected line segments become sparser with increasing
values of 𝑅. Specifically, the number of detected line segments in
Figs. 12(b), 12(c) and 12(d) are 621, 303, and 226, respectively.
Besides, too small 𝑅 leads to the production of discontinuous line
segments; see Fig. 12(b). On the contrary, too large 𝑅 leads to missing
some important line segments; see Fig. 12(d). Empirically, 𝑅 is sug-
gested to be set in the range of [3 ̄𝑑𝑖𝑠, 5 ̄𝑑𝑖𝑠] for generating satisfactory
results.

4.2. Performance of feature point detection

Qualitative comparison. To demonstrate the effectiveness of our
feature point detection method, we conduct a series of experiments
on large-scale point cloud scenes. We also compare our method with
existing methods, including NRLC (Liu et al., 2021) and ED (Xia and
Wang, 2017), and the results are illustrated in Figs. 13 and 14. In
Fig. 13, we show the feature point detection results on TLS point
clouds with sharp and shallow features. As can be seen from the
zoomed views, ED and NRLC methods tend to misidentify lots of points
in shallow features as non-feature points; see Figs. 13(b) and 13(c).
Compared to these two methods, our method can detect most points in
shallow regions as feature points. Fig. 14 shows feature point detection
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Fig. 11. Feature point detection results for varying 𝐾. We keep the same number of feature points in each result. From left to right: input point cloud and results with increasing
𝐾.
Fig. 12. Line segment extraction results for varying 𝑅. From left to right: input point cloud and results with increasing 𝑅.
Fig. 13. Feature point detection results on TLS point clouds. Zoomed views highlight that our method can detect most points in shallow features as feature points.
results on MLS point clouds with low sampling rates. Method ED
misses feature points in some geometric structures (e.g., windows) and
misidentifies numerous non-feature points in smooth regions as feature
points; see Fig. 14(b). Besides, although method NRLC can identify
feature points in shallow features well, it misses many feature points
in salient geometric features, leading to discontinuous detection results;
see Fig. 14(c). In contrast, our method also can accurately detect the
most complete feature points. Thus, the above results demonstrate that
our method outperforms the compared methods in handling large-scale
point clouds.

Evaluation of feature detection. To further evaluate the perfor-
mance of our method and those competing methods, we employ three
metrics (Liu et al., 2021), including precision (𝑃𝑟𝑒), recall (𝑅𝑒𝑐), and
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the F1-score (𝐹1). Specifically, 𝑃𝑟𝑒 and 𝑅𝑒𝑐 are defined as 𝑃𝑟𝑒 =
𝑇𝑃

𝑇𝑃+𝐹𝑃 and 𝑅𝑒𝑐 = 𝑇𝑃
𝑇𝑃+𝐹𝑁 , respectively. Here, 𝑇𝑃 , 𝐹𝑃 , and 𝐹𝑁 are

numbers of correctly identified, incorrectly identified, and erroneously
rejected points. Theoretically, 𝑃𝑟𝑒 measures the accuracy of feature
point detection, 𝑅𝑒𝑐 quantifies the completeness of detected feature
points, and 𝐹1 = 2𝑃𝑟𝑒⋅𝑅𝑒𝑐

𝑃 𝑟𝑒+𝑅𝑒𝑐 denotes the trade-off between precision and
recall rate. In general, the larger values of these metrics mean the better
performance of the corresponding method.

Table 2 lists the quantitative evaluation results. As we can see, all
the metric values of method ED are the smallest ones, while all the
metric values of our method are the largest ones. The above shows that
our method performs best on these point clouds. Moreover, we record
the run time of these methods in the last column of the table. The cost



International Journal of Applied Earth Observation and Geoinformation 128 (2024) 103728X. Xin et al.
Fig. 14. Feature point detection results on MLS point clouds. Zoomed views highlight that our method can detect more complete feature points from point clouds with low
sampling rates.
Table 1
Details of the testing data, including type, number of points, station, acquisition
equipment, and reference links.

Figure Data type Number of points Station Acquisition equipment

13a TLS 2153.7K Multi-station Leica P40
14b MLS 437.5K Moving Stereopolis II
15a TLS 2748.2K Multi-station Leica P40
16c TLS 1114.5K Multi-station Trimble TX8
17a TLS 212.2K Multi-station Leica P40
19d CAD 2123.3K – OnShape CAD
20(a)e RGB-D 901.2K – Synthetic
20(b)f ALS 1675.6K Moving Riegl LMS-Q680i

a https://www.semantic3d.net/.
b http://data.ign.fr/benchmarks/UrbanAnalysis/.
c http://www.libe57.org/data.html.
d https://deep-geometry.github.io/abc-dataset/.
e http://redwood-data.org/indoor/dataset.html.
f https://geo.nyu.edu/.

Table 2
Quantitative comparison and running time of our method with ED (Xia and Wang,
2017) and NRLC (Liu et al., 2021) on results in Figs. 13, 14.

Figure Method Metrics Time (s)

𝑃 − 𝑃𝑟𝑒 ↑ 𝑃 − 𝑅𝑒𝑐 ↑ 𝑃 − 𝐹1 ↑

13
ED 0.68 0.63 0.65 41.57
NRLC 0.75 0.69 0.72 22.53
Ours 0.86 0.80 0.83 23.92

14
ED 0.71 0.66 0.68 8.71
NRLC 0.79 0.75 0.77 4.85
Ours 0.88 0.83 0.85 4.96

of our method is closest to method NRLC, which is the fastest one. This
verifies the high efficiency of our method.

4.3. Performance of line segment generation

Qualitative comparison. We evaluate the performance of our line
segment generation method on various real-world point cloud scenes
and compare it with methods ED (Xia and Wang, 2017) and F3D (Lu
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et al., 2019). The comparison results are shown in Figs. 15, 16 and
17. In Fig. 15, we show line segment generation results on a point
cloud with rich details. As we can see, method F3D fails to extract com-
plement line segments due to its inadequate point cloud segmentation
when handling surfaces with rich details; see Fig. 15(b). Although ED
generates more line segments, the continuity of many line segments
is not preserved. Conversely, our method generates the most line
segments with the continuity kept. In Fig. 16, we show line segment
generation results on a point cloud with multi-scale features. As we
can see, though both ED and F3D can produce line segments at large-
scale geometric features, they fail to extract line segments at small-scale
geometric features; see Figs. 16(b) and 16(c). This problem is more
serious for ED. Compared to these two methods, our method can
successfully generate line segments at various scales; see Fig. 16(d).
In Fig. 17, we show line segment generation results on a point cloud
with low sampling rates. As we can see, though methods F3D and
ED can extract the contour edges of the model, both of them omit
many line segments at small-scale geometric features; see Figs. 17(b)
and 17(c). Conversely, our method is not only able to extract the
contour edges but also generate line segments at small-scale geometric
features; see Fig. 17(d). Thus, the above results demonstrate that our
method outperforms the compared methods in handling large-scale
point clouds, especially those with low sampling rates, rich details, and
multi-scale geometric features.

Quantitative evaluation. To further evaluate the performance of
our method, we adopt two metrics, including precision (𝑃𝑟𝑒) and recall
(𝑅𝑒𝑐), which are described in the work proposed by Lin et al. (2017).
Specifically, we first manually extract feature points from the original
point cloud and use them as ground-truth points. Then, 𝑃𝑟𝑒 represents
the proportion of points on the line segment that are ground-truth
points, while 𝑅𝑒𝑐 represents the proportion of ground-truth points
located on the line segment. We use a distance threshold 𝑡 = 3 ̄𝑑𝑖𝑠 to
determine whether a point lies on a line segment. Using these metrics,
we compared the performance of our method with methods ED and
F3D.

The quantitative evaluation results are listed in Table 3. As we
can see, both F3D and ED achieve higher 𝑃𝑟𝑒 values than 𝑅𝑒𝑐, which
indicates that they produce fewer false positive line segments but more
false negative ones. For example, as illustrated in Fig. 17, although they

https://www.semantic3d.net/
http://data.ign.fr/benchmarks/UrbanAnalysis/
http://www.libe57.org/data.html
https://deep-geometry.github.io/abc-dataset/
http://redwood-data.org/indoor/dataset.html
https://geo.nyu.edu/catalog?f%5Bdct_isPartOf_sm%5D%5B%5D=NYU+Research+Data
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Fig. 15. Line segment generation results on a point cloud scene with rich details. Zoomed views highlight that our method can generate more complete line segments.

Fig. 16. Line segment generation results on a point cloud with multi-scale features. Zoomed views highlight that our method can extract line segments at varying scales.

Fig. 17. Line segment generation results on a point cloud with low sampling rates, highlighting that our method can extract more complete line segments.
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Fig. 18. Visual comparison of deep-learning methods (EC-Net and PCEDNet) with our method on Bildstein and M-cube, demonstrating that our method can produce more accurate
feature points (colored in blue) and complete line segments (colored in black) on both small-scale and structure features. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
Table 3
Quantitative evaluation of line segment generation methods including F3D (Lu et al.,
2019), ED (Xia and Wang, 2017), and ours on results in Figs. 15, 16, and 17.

Figure Method Metrics Number of lines Time (s)

𝐿 − 𝑃𝑟𝑒 ↑ 𝐿 − 𝑅𝑒𝑐 ↑

15
F3D 0.73 0.71 598 85.05
ED 0.83 0.78 498 90.13
Ours 0.89 0.87 411 55.73

16
F3D 0.72 0.67 1979 35.89
ED 0.83 0.73 2198 38.95
Ours 0.87 0.84 1762 26.69

17
F3D 0.70 0.36 282 7.61
ED 0.69 0.43 543 8.46
Ours 0.87 0.83 866 5.57

omit many line segments, they can ensure that the existing detected
line segments are as correct as possible. On the contrary, our method
achieves the largest values of 𝑃𝑟𝑒 and 𝑅𝑒𝑐, demonstrating its superi-
ority when handling large-scale point clouds, especially those with low
sampling rates, rich details, and multi-scale geometric features. Besides,
we also record the run time in the last column of the table. As we can
see, the run time of method ED is slightly larger than that of method
F3D, but our method is much faster than these two methods.

4.4. Comparison with deep-learning methods

We compare our method’s performance to current deep-learning
approaches, such as EC-Net (Yu et al., 2018) and PCEDNet (Himeur
et al., 2021). For fairness, we employ the proposed Algorithm 1 to
11
Table 4
Quantitative comparison of our method with deep-learning methods (EC-Net and
PCEDNet) on results in Fig. 18. 𝑃𝑟𝑒: precision; 𝑅𝑒𝑐: recall; ↑: the higher score, the
better.

Model Method Metrics Time (s)

𝑃 − 𝑃𝑟𝑒 ↑ 𝑃 − 𝑅𝑒𝑐 ↑ 𝐿 − 𝑃𝑟𝑒 ↑ 𝐿 − 𝑅𝑒𝑐 ↑

Bildstein
EC-Net 0.77 0.49 0.82 0.55 429.37
PCEDNet 0.83 0.63 0.86 0.68 78.51
Ours 0.84 0.81 0.86 0.84 35.63

M-cube
EC-Net 0.87 0.79 0.91 0.82 37.34
PCEDNet 0.90 0.89 0.95 0.91 9.10
Ours 0.93 0.94 0.97 0.95 2.07

extract line segments from the detected point sets produced by EC-
Net and PCEDNet. Fig. 18 shows the comparison results. EC-Net and
PCEDNet cannot properly recognize feature points at small-scale fea-
tures and boundaries, resulting in incomplete line segment extraction,
as shown in Figs. 18(b) and 18(c). Contrarily, benefiting from the
proposed weighted centroid displacement scheme (1) and FPO (6), our
method can detect more accurate feature points and generate complete
line segments, especially in shallow features. In summary, our method
produces results with significantly higher visual quality and numerical
measures, demonstrating that it outperforms the deep-learning methods
(see Table 4).

4.5. Generalization tests

Aside from the cases tested above (e.g., buildings), we also evaluate
our method’s performance on a broader variety of point clouds, includ-
ing object- and scene-level data. In Fig. 19, we exhibit line segment
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Fig. 19. Line segment extraction results on CAD models.
Fig. 20. Line segment extraction results from scene point clouds.
d-
extraction results on CAD models obtained from ABC dataset (Choi
et al., 2015). We can see that our method can successfully extract
line segments from object-level point clouds with rich geometric in-
formation at various sizes. In Fig. 20, we show line segment extraction
results on point cloud scenes from Augmented ICL-NUIM (Choi et al.,
2015) dataset and DublinCity dataset (Laefer et al., 2017). We can ob-
serve that our method is similarly effective in extracting line segments
from scene-level point clouds with rich geometric characteristics and
complex contours. These findings show that our method has excellent
generality.

5. Conclusion

In this work, we present a two-stage method to extract high-quality
line segments from large-scale point clouds based on a weighted cen-
troid displacement scheme and three geometric operators. The pro-
posed weighted centroid scheme can be used to efficiently recognize
feature points from point clouds, especially in those regions with shal-
low features. The proposed geometric operators, namely the cluster, ex-
clusion, and assimilation operators, are utilized to ensure the simplicity,
accuracy, and completeness of the generated line segments. As demon-
strated in extensive experimental results, our method outperforms the
12
existing state-of-the-art approaches in accuracy and efficiency. For fu-
ture study, we may extend our work from two aspects. First, we intend
to extract curved lines from point clouds to broaden the applicability
of the proposed method. Second, we plan to investigate the possibility
of extending our approach by using deep learning techniques.
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